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Abstract-A new procedure, the Boundary Operator Method (BOM), for deriving normal mode resPonse
formulas in systems with time dependent boundary' conditions is demonstrated. The method of analysis is
applied to a finite, nonhomogeneous bar. This example illustrates thefoDowing advantages of the 80M: (I)
The resulting formulas for the displacement and stress are valid for the entire history of the system and for
Dirichlet, Neumann or Cauchy boundary conditions. (2) The uniqueness of the solution is unobscured since,
unlike the Mindlin-Goodman method, the present solution technique does not require spefific spatial
functions which render the transformed boundary conditions homogeneous. (3) The evaluation of the
solution is expedited by the absence of integrals containing auxiliary spatial functions. (4) The analysis
employs standard mathematical techniques.

NOMENCLATURE
At. Bt. Ck constants, FOLoYO

Co = (Eolp) elastic wave velocity, F"L'r- 1

Cm constant, FOLoyo
Dj cos aj +sin ai(a/aE), F"Loyo
fj dimensionless temporal function, FOLOYO

1
'2 gj dimensionless spatial function, FOLoyo

Ik = Xk
2 dE* FOLoyo

'I L length of bar, FOL IYO
K, upper limit of summation in eqn (29), FOLoyo
n real exponent

OJ boundary operator defined in eqn (13), F"Loyo
rk dimensionless temporal function, F"Loyo

t real time, FOL'YO
U displacement in X direction, F"LIYO

Xk dimensionless eigenfunction, FOLoyo
x axial coordinate, FOL I yo

aj dimensionless real numbers, F"Loyo
~I = 'IT/To F"LOyo
~2 =k'IT F"Loyo

E =X/KL dimensionless axial coordinate, F"Loyo
EI, E2 dimensionless boundaries of bar, F"Loyo

, dimensionless displacement, F"Loyo
K dimensionless coefficient, FOLoyo

Ak eigenvalues, F"Loyo
p mass density, FIL--.4r2

0'0 dimensionless amplitude of stress pulse, FOLoro
T=cot/KL dimensionless time, FOLoro
'It =u/KL dimensionless displacement, FOLoyo

• denotes dummy variable
denotes derivative wrt E

denotes derivative wrt T

INTRODUCTION
A variety of computational techniques have been employed to analyze one dimensional, finite,
continuous systems subjected to time dependent boundary conditions. Cinelli[1] has ascer
tained the transient response of thick elastic cylinders and spheres to dynamic surface loadings
by employing a finite Hankel transform. After a transformation that resulted in homogeneous
boundary conditions, Lee [2] also invoked the finite Hankel transform to study wave pro
pagation in a nonhomogeneous rod. Schreyer [3] has developed an inverse procedure that yields
exact solutions to the one-dimensional inhomogeneous wave equation. Reference [3] employed
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these transformation relations to compute amplitude amplification vs dimensionless frequency
at various locations in a bounded gradient layer resting on sinusoidally excited bedrock. The
method of characteristics was applied to the class of problems under discussion in Chou and
Greif [4] and Greif and Chou [5]. In Alzheimer and Forrestal [6], the circumferential stress
history at the inner surface of several thick cylinders subjected to a step pressure was
calculated using the Laplace transform technique in conjunction with asymptotic expansion of
the transform variable. Good agreement for the early time response was demonstrated between
these results and the numerical studies of [4]. Lindholm and Doshi [7] utilized the method of virtual
work to quantify the response of an elastic, nonhomogeneous, finite bar to a pressure pulse. This
procedure was also employed by Fisher[8] in a study of wave propagation in a hollow conical
frustum. Recently, Pao and Ceranoglu [9] have studied thick-wall spherical shells using ray theory.
Numerical results presented in [9] quantify the amplification and the compression-tension
oscillation of the radial stress history at various points in the hollow sphere.

A general method that" is applicable to all the problems discussed above is described in
Mindlin and Goodman[10]. In addition to generality, the algorithm contained in [10] has the
advantages of being readily understood and yielding solutions valid throughout the time of
interest, i.e. for temporal values which preclude asymptotic expansion of the Laplace transform.
These qualities have resulted in wide application of the Mindlin-Goodman method as indicated in
Meirovitch[1I], Epstein [12] and the bibliography in [12]. The essence of the procedure is to extend
the method of separation of variables to the solution of partial differential equations governing
continuous systems with time dependent boundary conditions. This is accomplished in a system
with one spatial variable by expressing the original dependent variable as the sum of a new
dependent variable and a finite series. Each term in this series is the product of a boundary
condition and an auxiliary function whose argument is the spatial variable. The only constraint on
the auxiliary functions is that they contain a sufficient number of terms to render the transformed
boundary conditions stationary. Due to the homogeneity of the resulting boundary conditions, the
transformed system of equations is amenable to solution by separation of variables. The desired
solution of the original time dependent boundary value problem is then obtained from the stated
transformation equation. As inspection of the solution given in [10] for a vibrating beam restrained
by time dependent boundary conditions reveals, the spatial dependence of the auxiliary functions
required in a given problem must be explicitly stated and the integrals containing these functions
must be evaluated to obtain the desired solution.

Reflection on the technique outlined above results in the conclusion that the introduction of
auxiliary functions is a mathematical convenience, and that the possibility exists of deriving
solutions that do not contain such functions. This follows since well posed problems in partial
differential equations are known to have unique solutions, i.e. solutions that are independent of
the particular auxiliary functions utilized. For one-dimensional wave propagation in a finite,
nonhomogeneous bar with time dependent displacement and/or stress boundary conditions, this
paper demonstrates a technique, the Boundary Operator Method (BOM), that eliminates the
auxiliary functions from the solutions for the displacement and stress in the bar. The generality
of the BOM is identical to [10] and, for this reason, the BOM can also be applied to
one-dimensional wave propagation problems involving beams, spheres and cylinders composed
of homogeneous or nonhomogeneous material.

ANALYSIS
Based on [7], the equation of motion for the free longitudinal motion in a thin bar with a

lengthwise variation in elastic modulus is:

(1)

where 'I'(E,7') is the dimensionless displacement from the initial position, n is an arbitrary
power that describes the axial modulus variation and E and 7' are the dimensionless spatial and
temporal variables, respectively (see Nomenclature). Generalized time dependent boundary
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conditions are described by:

(2)

where El and E2 correspond to the left and right boundaries of the bar, respectively, and the Ui

are real numbers. The associated initial conditions are:

aqr .
qr(E,O) ='I'o(E), a:;- (E, 0) =qro(E).

Now define the transformation:

2

qr(E, T}= (E:T) +Lgi(E)!b).
i=1

With the aid of (4), eqns (I}-(3) are written as:

2

DM(Ej, T)] =/i(T)- L Di[gj(Ei)]fj(T); i = 1,2
j=1

Equation (6) is made homogeneous by requiring that:

where 8ij = 0 for ii: j and 8tj = 1 for i = j.
A solution to (5) is now sought in the form:

00

(E, T) = L Xk(E)Tk(T)
k=t

where the Xk(Ei) satisfy

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

and the rigid body eigenfunction, Xo, has been omitted from the slSmmation. Substituting (9)
into (5), multiplying both sides by X ko integrating from El to E2 and utilizing the orthogonality of
the eigenfunctions yields:

Tk+Ak
2Tk = Ik- t±f"2 [(E*"g '! +nE*"-tg;)!i - gj';JXk dE*

,=1 ".

f"2

where I k = Xk
2dE*.

".Now employing (8) and (10), the equations:

(II)
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are derived. Thus integrating the first term in the numerator of (11) by parts, invoking (12) and
defining the boundary operator:

0; [Xk(E/)] =(-1);(E/)"[Xk(E;) sin a/ - Xfc(E/) cos aiJ, i = 1,2; E(# 0
O;[Xi.(E;)] =(-I);[Xk(ej) sin aj - Xfc(Ej) cos ad, i = 1,2; n = ° and one of Ei =°

simplifies (11) to:

The solution of (14) is:

(13)

(14)

Tk(1') = A k cos Ak1'+ Bk; sin Ak;1' + (AkIkr l±lT

(O;[Xk(Ej)J!; _(Ak
2
// + f,) f"2 g;Xk dE*)

.=1 0 ",

xsinAk(T -1'*) dT*. (15)

Integrating the last term in the numerator of (15) by parts permits (15) to be written as:

(16)

Hence,

Tk(1') =-Ak;Ak sin Ak1' + AkBk cos AkT + Ik-I ~ (Oi[Xk(E/)J f M1'*) cos Ak(1' - T*) dT*

+ Uj(O) cos AkT - AkMO) sin Ak1' - /;(1')J f"2 gjXk dE*). (17)

".
From (7) and (9)

Tk(O) =Ik-I (2 ['I'o(E*) - ~ g;(E*)f;(O)JXk dE*

Tk(O) = Ik-I (2 ['J'1o(E*) - ~ gj(e*)/;(O)]XkdE*.

Specifying T =0 in (16) and (17) and comparing with (18) yields:

Tk(-r) =Ik-I (1:' {'I'o(E*) cos Akt + Ak- l (1o(E*) sin Ak1' - ~ gj(e*)/i(1')}Xk dE*

+ Ak-
I~ OJ[Xk(ej)]f /;(1'*) sin Ak(1' - 1'*)d1'*).

Substituting (20) into (9) and employing the result in (4) gives:

(18)

(19)

(20)

(21)
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Noting the eigenfunction expansion:

(22)

(21) becomes:

'I'(E, 'T) = i Ik-I (f"Z {'I'o(E*) cos Ak'T +Ak-1'Ii'o(E*) sin Ak'T}Xk dE*
k=1 ",

+Ak-1~ OJ [Xk(Ej)] fo' /i('T*) sin Ak(T - T*) dT* )Xk(E) (23)

for EI <E <E2'

For zero initial conditions and a forcing function applied at the left boundary, (23) reduces to (20) of
[7].

Term by term difJerentation of (23) yields:

(24)

for E, < E< E2.

NUMERICAL EXAMPLE
The uniaxial stress is evaluated in a homogeneous bar for which the boundary conditions

are:

h(T) =~: (0, T) =Uo sin (::) for 0 $ T $ 'To

= 0 for 'T > 'TQ

(25)

Note that (25) implies that a, = a2 = 'Tr/2 in (2). Thus the eigenfunctions in (9) satisfy free-free
boundary conditions. From [7], the required eigenfunctions and eigenvalues for the homo
geneous bar are COS(k'TrE) and k'Tr, respectively. The initial conditions are taken as:

From (23):

(26)

O<E<1 (27)

where:

The dimensionless stress is obtained from (24) as:

a'I' 00-a (E, T) = 2L Ck(T) Sin(k'TrE), 0 < E< 1
E k=1

(28)

(29)
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With f31 =7T!'r0 and f32 = k7T, the CdT) are given as follows for 1':5 TO

For 1'0:51'

(32)

The behavior of (29) as E ~O has been explained by Friedman[13]. For an infinite number of
terms in (29), this reference demonstrates that:

where CI(T) is determined from the expansion:

C ( ) = ~ C",(T)
k l' .:... k'" .

171=1

Integration of (28) by parts results in CI(T) = Ib)!7T. Thus from (34):

a'l'l . (7TT)-;- ~Uo sm -, 1':5 TO.
vE ,-+0 To

(34)

(35)

(36)

For a compressive pulse with amplitude Uo =-1.00 and a time duration TO =0.50,
the digital computer program WAVE, available from the authors upon request, was employed
to compute various displacement and stress profiles. Equation (27) was utilized together
with the rigid body displacement, - fO(uo( l' - 1'*) sin (7T7T*!To) dT* from Appendix 2 of [7],
to ascertain the axial variation of bar displacement at l' = 0.25, 0.50, 0.75 and 1.00,
respectively. The results are shown in Fig. 1. Figures 2 and 3 present curves calculated from
(29) for l' = 0.25 and K s = 10,100 and WOO, respectively. At this time the amplitude of the pulse
at the origin is unity and the leading edge of the pulse has arrived at the location E =
0.25 [tco = (LT!Co)(Co) =LT, E =LT!L = 1']. Clearly inclusion of more terms in (29) improves the
simulation of the actual stress c.ondition by decreasing the size of the region where the pulse
rises from a spurious value of zero to the required unit value of 11(0.25) and by eliminating the
extraneous oscillations near the leading edge of the wave, Fig. 2 also demonstrates that the
marked improvement in rise time of the plotted solution for Ks = 1000 compared to the curve
for K s = 100 is associated with negligible increase in overshooting since the first stress peaks
are identical to plotting accuracy. Figure 4 is a plot of two stress profiles in the time regime after
pulse application. Since reflection from the free end changes the sign of the incoming stress wave,
the spatial variations of the stress at l' = 1.5 and l' 2.0 are equal to the negative of the solutions
obtained for l' = 1.0 and 0.5, respectively.

SUMMARY
Review of the above numerical example discloses that in order to be assured of the validity

of the solution of interest, either in other second order systems or in higher order systems such
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as govern beams and plates. two conditions must be met. These are that the uniform
convergence of any series to be diBerentiated must be proven (this was done for (24) in [14] and
that comparable behavior to that of (36) must be shown at the boundaries of the region whicb
are subjected to time-dependent excitation. In problems where these requirements are satisfied.
the analyst gains three essential benefits. in addition to the relative simplicity of the mathema
tics, from employing the BOM. First. the solutions for the dependent variables of interest are not
restricted to a limited range of the temporal variable or a particular set
of boundary conditions. In the problem investigated above. tbe eBect of Dirichlet (fixed).
Neumann (free) or Cauchy (end constrained by a light spring[l5]). boundary conditions can be
ascertained by setting al "" a2 = 0, al = a2 "'" 11'/2, ah a2;t. O:¢ 11'/2. respectively in (2). Second.
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Fig. 2. Stress solution near (0 <: Ii ~0.00 forced boundary.
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Fig. 3. Stress solution in vicinity (0.01 ~€ ~O.50) of forced boundary.
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Fig. 4. Stress solution after pulse application.

0.9 1.0

since auxiliary functions are not employed, the uniqueness of the solution is insured. Third, the
necessity of determining and evaluating particular auxiliary functions corresponding to desig
nated boundary conditions which is a requirement of [10] has been eliminated.
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